Help: Wiki Math
Search
- Version 1
- by (unknown)
- Version 2
- by (unknown)
Deletions or items before changed
Additions or items after changed
1 | - | The Wiki supports LaTeX markup: |
+ | The Wiki supports LaTeX markup: <MATH>pi=frac{3}{4} sqrt{3}+24 int_0^{1/4}{sqrt{x-x^2}dx}</MATH>
|
---|---|---|---|---|
2 | - | + | ||
3 | - | < |
+ | Mathematical Formula (LaTeX) can be inserted into text like this:
|
4 | - | + | ||
5 | - | Mathematical Formula (LaTeX) can be inserted into text like this: |
+ | {{{
|
6 | - | {{{ |
+ | <math>Insert formula here</math>
|
7 | - | <math>Insert formula here</math> |
+ | }}}
|
8 | - | }}} |
+ | |
9 | - | + | For example:
|
|
10 | - | For example: |
+ | |
11 | - | {{{<math> |
+ | {{{
|
12 | - | + | <math>alpha^2+beta^2=1</math>
|
|
13 | - | ...displays < |
+ | }}}
|
14 | - | + | ||
15 | - | == Displaying a Formula == |
+ | ...displays <MATH>alpha^2+beta^2=1</MATH>
|
16 | - | + | ||
17 | - | The Wiki uses a subset of TeX markup, including some extensions from LaTeX and AMSLaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on the complexity of the expression. While it can generate MathML, it is not currently used due to limited browser support. As browsers become more advanced and support for MathML becomes more wide-spread, this could be the preferred method of output as images have very real disadvantages. |
+ | == Displaying a Formula ==
|
18 | - | + | ||
19 | - | === Syntax === |
+ | The Wiki uses a subset of TeX markup, including some extensions from LaTeX and AMSLaTeX, for mathematical formulae. It generates either PNG images or simple HTML markup, depending on the complexity of the expression. While it can generate MathML, it is not currently used due to limited browser support. As browsers become more advanced and support for MathML becomes more wide-spread, this could be the preferred method of output as images have very real disadvantages.
|
20 | - | + | ||
21 | - | Math markup goes inside `<math> ... </math>`. |
+ | === Syntax ===
|
22 | - | + | ||
23 | - | ===Pros of |
+ | Math markup goes inside `<math> ... </math>`.
|
24 | - | + | ||
25 | - | + | === Pros of ===
|
|
26 | - | + | ||
27 | - | + | === Pros of TeX ===
|
|
28 | - | === Pros of TeX === |
+ | |
29 | - | + | {{{
|
|
30 | - | + | x}}}" means "mathematical variable <math>x</math>", whereas in HTML "{{{x
|
|
31 | - | + | }}}
|
|
32 | - | + | ||
33 | - | + | " could mean anything. Information has been irrevocably lost.
|
|
34 | - | + | ||
35 | - | + | === Example Formulas ===
|
|
36 | - | === Example Formulas === |
+ | |
37 | - | + | The following are a few examples of formulas:
|
|
38 | - | The following are a few examples of formulas: |
+ | |
39 | - | + | {{{
|
|
40 | - | {{{ |
+ | <math>sqrt{1-e^2}</math>
|
41 | - | <math> |
+ | }}}
|
42 | - | }}} |
+ | |
43 | - | < |
+ | <MATH>sqrt{1-e^2}</MATH>
|
44 | - | + | ||
45 | - | {{{<math> |
+ | {{{
|
46 | - | < |
+ | <math>overbrace{ 1+2+cdots+100 }^{5050}</math>
|
47 | - | + | }}}
|
|
48 | - | {{{<math>ax^2 + bx + c = 0</math>}}} |
+ | |
49 | - | < |
+ | <MATH>overbrace{ 1+2+cdots+100 }^{5050}</MATH>
|
50 | - | + | ||
51 | - | {{{<math> |
+ | {{{
|
52 | - | < |
+ | <math>ax^2 + bx + c = 0</math>
|
53 | - | + | }}}
|
|
54 | - | == Functions, symbols, special characters == |
+ | |
55 | - | + | <MATH>ax^2 + bx + c = 0</MATH>
|
|
56 | - | === Accents/Diacritics === |
+ | |
57 | - | + | {{{
|
|
58 | - | + | <math>int_{-N}^{N} e^x, dx</math>
|
|
59 | - | + | }}}
|
|
60 | - | + | ||
61 | - | === Standard functions === |
+ | <MATH>int_{-N}^{N} e^x, dx</MATH>
|
62 | - | + | ||
63 | - | + | == Functions, symbols, special characters ==
|
|
64 | - | + | ||
65 | - | + | === Accents/Diacritics ===
|
|
66 | - | + | ||
67 | - | + | <TBODY><TR><TD>`acute{a} grave{a} hat{a} tilde{a} breve{a}` </TD><TD><MATH>acute{a} grave{a} hat{a} tilde{a} breve{a}</MATH> </TD></TR><TR><TD>`check{a} bar{a} ddot{a} dot{a}` </TD><TD><MATH> check{a} bar{a} ddot{a} dot{a}</MATH> </TD></TR></TBODY>
|
|
68 | - | + | ||
69 | - | + | === Standard functions ===
|
|
70 | - | + | ||
71 | - | + | <TBODY><TR><TD>`sin a cos b tan c`</TD> <TD><MATH> sin a cos b tan c</MATH> </TD></TR><TR><TD>`sec d csc e cot f`</TD> <TD><MATH>sec d csc e cot f,!</MATH> </TD></TR><TR><TD>`arcsin h arccos i arctan j`</TD> <TD><MATH>arcsin h arccos i arctan j,!</MATH> </TD></TR><TR><TD>`sinh k cosh l tanh m coth n`</TD> <TD><MATH> sinh k cosh l tanh m coth n</MATH> </TD></TR><TR><TD>`operatorname{sh},o,operatorname{ch},p,operatorname{th},q`</TD> <TD><MATH> operatorname{sh},o,operatorname{ch},p,operatorname{th},q</MATH> </TD></TR><TR><TD>`operatorname{arsinh},r,operatorname{arcosh},s,operatorname{artanh},t`</TD> <TD><MATH>operatorname{arsinh},r,operatorname{arcosh},s,operatorname{artanh},t,!</MATH> </TD></TR><TR><TD>`lim u limsup v liminf w min x max y` </TD><TD><MATH> lim u limsup v liminf w min x max y</MATH> </TD></TR><TR><TD>`inf z sup a exp b ln c lg d log e log_{10} f ker g` </TD><TD><MATH> inf z sup a exp b ln c lg d log e log_{10} f ker g</MATH> </TD></TR><TR><TD>`deg h gcd i Pr j det k hom l arg m dim n` </TD><TD><MATH>deg h gcd i Pr j det k hom l arg m dim n,!</MATH> </TD></TR></TBODY>
|
|
72 | - | + | ||
73 | - | === Modular arithmetic === |
+ | === Modular arithmetic ===
|
74 | - | + | ||
75 | - | + | <TBODY><TR><TD>`s_k equiv 0 pmod{m}` </TD><TD><MATH>s_k equiv 0 pmod{m},! </MATH></TD></TR><TR><TD>`a,bmod,b` </TD><TD><MATH>a,bmod,b,!</MATH> </TD></TR></TBODY>
|
|
76 | - | + | ||
77 | - | + | === Derivatives ===
|
|
78 | - | === Derivatives === |
+ | |
79 | - | + | <TBODY><TR><TD>`nabla , partial x , dx , dot x , ddot y, dy/dx, frac{dy}{dx}, frac{partial^2 y}{partial x_1,partial x_2}` </TD><TD><MATH>nabla , partial x , dx , dot x , ddot y, dy/dx, frac{dy}{dx}, frac{partial^2 y}{partial x_1,partial x_2}</MATH> </TD></TR></TBODY>
|
|
80 | - | + | ||
81 | - | + | === Sets ===
|
|
82 | - | === Sets === |
+ | |
83 | - | + | <TBODY><TR><TD>`forall exists empty emptyset varnothing` </TD><TD><MATH>forall exists empty emptyset varnothing,!</MATH> </TD></TR><TR><TD>`in ni not in notin subset subseteq supset supseteq` </TD><TD><MATH>in ni not in notin subset subseteq supset supseteq,!</MATH> </TD></TR><TR><TD>`cap bigcap cup bigcup biguplus setminus smallsetminus` </TD><TD><MATH>cap bigcap cup bigcup biguplus setminus smallsetminus,!</MATH> </TD></TR><TR><TD>`sqsubset sqsubseteq sqsupset sqsupseteq sqcap sqcup bigsqcup` </TD><TD><MATH>sqsubset sqsubseteq sqsupset sqsupseteq sqcap sqcup bigsqcup,!</MATH> </TD></TR></TBODY>
|
|
84 | - | + | ||
85 | - | + | === Operators ===
|
|
86 | - | + | ||
87 | - | + | <TBODY><TR><TD>`+ oplus bigoplus pm mp -` </TD><TD><MATH>+ oplus bigoplus pm mp - ,!</MATH> </TD></TR><TR><TD>`times otimes bigotimes cdot circ bullet bigodot` </TD><TD><MATH>times otimes bigotimes cdot circ bullet bigodot,!</MATH> </TD></TR><TR><TD>`star * / div frac{1}{2}` </TD><TD><MATH>star * / div frac{1}{2},!</MATH> </TD></TR></TBODY>
|
|
88 | - | + | ||
89 | - | === Operators === |
+ | === Logic ===
|
90 | - | + | ||
91 | - | + | <TBODY><TR><TD>`land (or and) wedge bigwedge bar{q} to p` </TD><TD><MATH>land wedge bigwedge bar{q} to p,!</MATH> </TD></TR><TR><TD>`lor vee bigvee lnot neg q And` </TD><TD><MATH>lor vee bigvee lnot neg q And,!</MATH> </TD></TR></TBODY>
|
|
92 | - | + | ||
93 | - | + | === Root ===
|
|
94 | - | + | ||
95 | - | === Logic === |
+ | <TBODY><TR><TD>`sqrt{2} sqrt[n]{x}` </TD><TD><MATH>sqrt{2} sqrt[n n]{x},!</MATH> </TD></TR></TBODY>
|
96 | - | + | ||
97 | - | + | === Relations ===
|
|
98 | - | + | ||
99 | - | === Root === |
+ | <TBODY><TR><TD>`sim approx simeq cong dot= overset{underset{mathrm{def}}{}}{=}` </TD><TD><MATH>sim approx simeq cong dot= overset{underset{mathrm{def}}{}}{=},!</MATH> </TD></TR><TR><TD>`le < ll gg ge > equiv notequiv ne mbox{or} neq propto` </TD><TD><MATH>le < ll gg ge > equiv notequiv ne mbox{or} neq propto,!</MATH> </TD></TR></TBODY>
|
100 | - | + | ||
101 | - | + | === Geometric ===
|
|
102 | - | + | ||
103 | - | === Relations === |
+ | <TBODY><TR><TD>`Diamond Box triangle angle perp mid nmid | 45^circ` </TD><TD><MATH>Diamond , Box , triangle , angle perp , mid ; nmid , | 45^circ,!</MATH> </TD></TR></TBODY>
|
104 | - | + | ||
105 | - | + | === Arrows ===
|
|
106 | - | + | ||
107 | - | + | <TBODY><TR><TD>`leftarrow (or gets) rightarrow (or to) nleftarrow notto leftrightarrow nleftrightarrow longleftarrow longrightarrow longleftrightarrow` </TD><TD><MATH>leftarrow rightarrow nleftarrow notto leftrightarrow nleftrightarrow longleftarrow longrightarrow longleftrightarrow ,!</MATH> </TD></TR><TR><TD>`Leftarrow Rightarrow nLeftarrow nRightarrow Leftrightarrow nLeftrightarrow Longleftarrow Longrightarrow Longleftrightarrow (or iff)` </TD><TD><MATH>Leftarrow Rightarrow nLeftarrow nRightarrow Leftrightarrow nLeftrightarrow Longleftarrow Longrightarrow Longleftrightarrow ,!</MATH> </TD></TR><TR><TD>`uparrow downarrow updownarrow Uparrow Downarrow Updownarrow nearrow searrow swarrow nwarrow` </TD><TD><MATH> uparrow downarrow updownarrow Uparrow Downarrow Updownarrow nearrow searrow swarrow nwarrow</MATH> </TD></TR><TR><TD>`rightharpoonup rightharpoondown leftharpoonup leftharpoondown upharpoonleft upharpoonright downharpoonleft downharpoonright rightleftharpoons leftrightharpoons` </TD><TD><MATH>rightharpoonup rightharpoondown leftharpoonup leftharpoondown upharpoonleft upharpoonright downharpoonleft downharpoonright rightleftharpoons leftrightharpoons ,!</MATH> </TD></TR><TR><TD>`curvearrowleft circlearrowleft Lsh upuparrows rightrightarrows rightleftarrows Rrightarrow rightarrowtail looparrowright` </TD><TD><MATH>curvearrowleft circlearrowleft Lsh upuparrows rightrightarrows rightleftarrows Rrightarrow rightarrowtail looparrowright ,!</MATH> </TD></TR><TR><TD>`curvearrowright circlearrowright Rsh downdownarrows leftleftarrows leftrightarrows Lleftarrow leftarrowtail looparrowleft` </TD><TD><MATH>curvearrowright circlearrowright Rsh downdownarrows leftleftarrows leftrightarrows Lleftarrow leftarrowtail looparrowleft ,!</MATH> </TD></TR><TR><TD>`mapsto longmapsto hookrightarrow hookleftarrow multimap leftrightsquigarrow rightsquigarrow` </TD><TD><MATH>mapsto longmapsto hookrightarrow hookleftarrow multimap leftrightsquigarrow rightsquigarrow ,!</MATH> </TD></TR></TBODY>
|
|
108 | - | === Geometric === |
+ | |
109 | - | + | === Special ===
|
|
110 | - | + | ||
111 | - | + | <TBODY><TR><TD>`And eth S P % dagger ddagger ldots cdots` </TD><TD><MATH>And eth S P % dagger ddagger ldots cdots,!</MATH> </TD></TR><TR><TD>`smile frown wr triangleleft triangleright infty bot top` </TD><TD><MATH>smile frown wr triangleleft triangleright infty bot top,!</MATH> </TD></TR><TR><TD>`vdash vDash Vdash models lVert rVert imath hbar` </TD><TD><MATH>vdash vDash Vdash models lVert rVert imath hbar,!</MATH> </TD></TR><TR><TD>`ell mho Finv Re Im wp complement` </TD><TD><MATH>ell mho Finv Re Im wp complement,!</MATH> </TD></TR><TR><TD>`diamondsuit heartsuit clubsuit spadesuit Game flat natural sharp` </TD><TD><MATH>diamondsuit heartsuit clubsuit spadesuit Game flat natural sharp,!</MATH> </TD></TR></TBODY>
|
|
112 | - | === Arrows === |
+ | |
113 | - | + | === Unsorted (new stuff) ===
|
|
114 | - | + | ||
115 | - | + | <TBODY><TR><TD>`vartriangle triangledown lozenge circledS measuredangle nexists Bbbk backprime blacktriangle blacktriangledown` </TD><TD><MATH>vartriangle triangledown lozenge circledS measuredangle nexists Bbbk backprime blacktriangle blacktriangledown</MATH> </TD></TR><TR><TD>`blacksquare blacklozenge bigstar sphericalangle diagup diagdown dotplus Cap Cup barwedge` </TD><TD><MATH> blacksquare blacklozenge bigstar sphericalangle diagup diagdown dotplus Cap Cup barwedge</MATH> </TD></TR><TR><TD>`veebar doublebarwedge boxminus boxtimes boxdot boxplus divideontimes ltimes rtimes leftthreetimes` </TD><TD><MATH>veebar doublebarwedge boxminus boxtimes boxdot boxplus divideontimes ltimes rtimes leftthreetimes</MATH> </TD></TR><TR><TD>`rightthreetimes curlywedge curlyvee circleddash circledast circledcirc centerdot intercal leqq leqslant` </TD><TD><MATH>rightthreetimes curlywedge curlyvee circleddash circledast circledcirc centerdot intercal leqq leqslant</MATH> </TD></TR><TR><TD>`eqslantless lessapprox approxeq lessdot lll lessgtr lesseqgtr lesseqqgtr doteqdot risingdotseq` </TD><TD><MATH>eqslantless lessapprox approxeq lessdot lll lessgtr lesseqgtr lesseqqgtr doteqdot risingdotseq</MATH> </TD></TR><TR><TD>`fallingdotseq backsim backsimeq subseteqq Subset preccurlyeq curlyeqprec precsim precapprox vartriangleleft` </TD><TD><MATH>fallingdotseq backsim backsimeq subseteqq Subset preccurlyeq curlyeqprec precsim precapprox vartriangleleft</MATH> </TD></TR><TR><TD>`Vvdash bumpeq Bumpeq geqq geqslant eqslantgtr gtrsim gtrapprox eqsim gtrdot` </TD><TD><MATH>Vvdash bumpeq Bumpeq geqq geqslant eqslantgtr gtrsim gtrapprox eqsim gtrdot</MATH> </TD></TR><TR><TD>`ggg gtrless gtreqless gtreqqless eqcirc circeq triangleq thicksim thickapprox supseteqq` </TD><TD><MATH>ggg gtrless gtreqless gtreqqless eqcirc circeq triangleq thicksim thickapprox supseteqq</MATH> </TD></TR><TR><TD>`Supset succcurlyeq curlyeqsucc succsim succapprox vartriangleright shortmid shortparallel between pitchfork` </TD><TD><MATH>Supset succcurlyeq curlyeqsucc succsim succapprox vartriangleright shortmid shortparallel between pitchfork</MATH> </TD></TR><TR><TD>`varpropto blacktriangleleft therefore backepsilon blacktriangleright because nleqslant nleqq lneq lneqq` </TD><TD><MATH>varpropto blacktriangleleft therefore backepsilon blacktriangleright because nleqslant nleqq lneq lneqq</MATH> </TD></TR><TR><TD>`lvertneqq lnsim lnapprox nprec npreceq precneqq precnsim precnapprox nsim nshortmid` </TD><TD><MATH>lvertneqq lnsim lnapprox nprec npreceq precneqq precnsim precnapprox nsim nshortmid</MATH> </TD></TR><TR><TD>`nvdash nVdash ntriangleleft ntrianglelefteq nsubseteq nsubseteqq varsubsetneq subsetneqq varsubsetneqq ngtr` </TD><TD><MATH>nvdash nVdash ntriangleleft ntrianglelefteq nsubseteq nsubseteqq varsubsetneq subsetneqq varsubsetneqq ngtr</MATH> </TD></TR><TR><TD>`subsetneq` </TD><TD><MATH>subsetneq</MATH> </TD></TR><TR><TD>`ngeqslant ngeqq gneq gneqq gvertneqq gnsim gnapprox nsucc nsucceq succneqq` </TD><TD><MATH>ngeqslant ngeqq gneq gneqq gvertneqq gnsim gnapprox nsucc nsucceq succneqq</MATH> </TD></TR><TR><TD>`succnsim succnapprox ncong nshortparallel nparallel nvDash nVDash ntriangleright ntrianglerighteq nsupseteq` </TD><TD><MATH>succnsim succnapprox ncong nshortparallel nparallel nvDash nVDash ntriangleright ntrianglerighteq nsupseteq</MATH> </TD></TR><TR><TD>`nsupseteqq varsupsetneq supsetneqq varsupsetneqq` </TD><TD><MATH>nsupseteqq varsupsetneq supsetneqq varsupsetneqq</MATH> </TD></TR><TR><TD>`jmath surd ast uplus diamond bigtriangleup bigtriangledown ominus` </TD><TD><MATH>jmath surd ast uplus diamond bigtriangleup bigtriangledown ominus,!</MATH> </TD></TR><TR><TD>`oslash odot bigcirc amalg prec succ preceq succeq` </TD><TD><MATH>oslash odot bigcirc amalg prec succ preceq succeq,!</MATH> </TD></TR><TR><TD>`dashv asymp doteq parallel` </TD><TD><MATH>dashv asymp doteq parallel,!</MATH> </TD></TR><TR><TD>`ulcorner urcorner llcorner lrcorner` </TD><TD><MATH>ulcorner urcorner llcorner lrcorner</MATH> </TD></TR></TBODY>
|
|
116 | - | + | ||
117 | - | + | == Larger Expressions ==
|
|
118 | - | + | ||
119 | - | + | === Parenthesizing big expressions, brackets, bars ===
|
|
120 | - | + | ||
121 | - | + | <TBODY><TR><TD>'''Feature''' </TD><TD>'''Syntax''' </TD><TD>'''How it looks rendered''' </TD></TR><TR><TD>Bad </TD><TD>`( frac{1}{2} )` </TD><TD><MATH>( frac{1}{2} )</MATH> </TD></TR><TR><TD>Good </TD><TD>`left ( frac{1}{2} right )` </TD><TD><MATH>left ( frac{1}{2} right )</MATH> </TD></TR></TBODY>
|
|
122 | - | === Special === |
+ | |
123 | - | + | You can use various delimiters with left and right:
|
|
124 | - | + | ||
125 | - | + | <TBODY><TR><TD>'''Feature''' </TD><TD>'''Syntax''' </TD><TD>'''How it looks rendered''' </TD></TR><TR><TD>Parentheses </TD><TD>`left ( frac{a}{b} right )` </TD><TD><MATH>left ( frac{a}{b} right )</MATH> </TD></TR><TR><TD>Brackets </TD><TD>`left [ frac{a}{b} right ] quad left lbrack frac{a}{b} right rbrack` </TD><TD><MATH>left [frac{a}{b} right] quad left lbrack frac{a}{b} right rbrack</MATH> </TD></TR><TR><TD>Braces </TD><TD>`left { frac{a}{b} right } quad left lbrace frac{a}{b} right rbrace` </TD><TD><MATH>left { frac{a}{b} right } quad left lbrace frac{a}{b} right rbrace</MATH> </TD></TR><TR><TD>Angle brackets </TD><TD>`left langle frac{a}{b} right rangle` </TD><TD><MATH>left langle frac{a}{b} right rangle</MATH> </TD></TR><TR><TD>Bars and double bars </TD><TD>`left | frac{a}{b} right vert left Vert frac{c}{d} right |` </TD><TD><MATH>left | frac{a}{b} right vert left Vert frac{c}{d} right |</MATH> </TD></TR><TR><TD>Floor and ceiling functions: </TD><TD>`left lfloor frac{a}{b} right rfloor left lceil frac{c}{d} right rceil` </TD><TD><MATH>left lfloor frac{a}{b} right rfloor left lceil frac{c}{d} right rceil</MATH> </TD></TR><TR><TD>Slashes and backslashes </TD><TD>`left / frac{a}{b} right backslash` </TD><TD><MATH>left / frac{a}{b} right backslash</MATH> </TD></TR><TR><TD>Up, down and up-down arrows </TD><TD>`left uparrow frac{a}{b} right downarrow quad left Uparrow frac{a}{b} right Downarrow quad left updownarrow frac{a}{b} right Updownarrow` </TD><TD><MATH>left uparrow frac{a}{b} right downarrow quad left Uparrow frac{a}{b} right Downarrow quad left updownarrow frac{a}{b} right Updownarrow</MATH> </TD></TR><TR><TD>Delimiters can be mixed,[[BR]]as long as left and right match || `left [ 0,1 right )` [[BR]] `left langle psi right |` || <MATH>left [ 0,1 right )</MATH> [[BR]] <MATH>left langle psi right |</MATH> </TD></TR><TR><TD>Use left. and right. if you don't[[BR]]want a delimiter to appear: </TD><TD>`left . frac{A}{B} right } to X` </TD><TD><MATH>left . frac{A}{B} right } to X</MATH> </TD></TR><TR><TD>Size of the delimiters </TD><TD>`big( Big( bigg( Bigg( dots Bigg] bigg] Big] big]/` </TD><TD><MATH>big( Big( bigg( Bigg( dots Bigg] bigg] Big] big]</MATH> </TD></TR><TR><TD>. </TD><TD>`big{ Big{ bigg{ Bigg{ dots Biggrangle biggrangle Bigrangle bigrangle` </TD><TD><MATH>big{ Big{ bigg{ Bigg{ dots Biggrangle biggrangle Bigrangle bigrangle</MATH> </TD></TR><TR><TD>. </TD><TD>`big| Big| bigg| Bigg| dots Bigg| bigg| Big| big|` </TD><TD><MATH>big| Big| bigg| Bigg| dots Bigg| bigg| Big| big|</MATH> </TD></TR><TR><TD>. </TD><TD>`biglfloor Biglfloor bigglfloor Bigglfloor dots Biggrceil biggrceil Bigrceil bigrceil` </TD><TD><MATH>biglfloor Biglfloor bigglfloor Bigglfloor dots Biggrceil biggrceil Bigrceil bigrceil</MATH> </TD></TR><TR><TD>. </TD><TD>`biguparrow Biguparrow bigguparrow Bigguparrow dots BiggDownarrow biggDownarrow BigDownarrow bigDownarrow` </TD><TD><MATH>biguparrow Biguparrow bigguparrow Bigguparrow dots BiggDownarrow biggDownarrow BigDownarrow bigDownarrow</MATH> </TD></TR><TR><TD>. </TD><TD>`bigupdownarrow Bigupdownarrow biggupdownarrow Biggupdownarrow dots BiggUpdownarrow biggUpdownarrow BigUpdownarrow bigUpdownarrow` </TD><TD><MATH>bigupdownarrow Bigupdownarrow biggupdownarrow Biggupdownarrow dots BiggUpdownarrow biggUpdownarrow BigUpdownarrow bigUpdownarrow</MATH> </TD></TR><TR><TD>. </TD><TD>`big / Big / bigg / Bigg / dots Biggbackslash biggbackslash Bigbackslash bigbackslash` </TD><TD><MATH>big / Big / bigg / Bigg / dots Biggbackslash biggbackslash Bigbackslash bigbackslash</MATH> </TD></TR></TBODY>
|
|
126 | - | + | ||
127 | - | + | == Alphabets and typefaces ==
|
|
128 | - | + | ||
129 | - | + | Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas.
|
|
130 | - | === Unsorted (new stuff) === |
+ | |
131 | - | + | <TBODY><TR><TD>_2. '''Greek alphabet''' </TD></TR><TR><TD>`Alpha Beta Gamma Delta Epsilon Zeta` </TD><TD><MATH>Alpha Beta Gamma Delta Epsilon Zeta ,!</MATH> </TD></TR><TR><TD>`Eta Theta Iota Kappa Lambda Mu` </TD><TD><MATH>Eta Theta Iota Kappa Lambda Mu ,!</MATH> </TD></TR><TR><TD>`Nu Xi Pi Rho Sigma Tau` </TD><TD><MATH>Nu Xi Pi Rho Sigma Tau,!</MATH> </TD></TR><TR><TD>`Upsilon Phi Chi Psi Omega` </TD><TD><MATH>Upsilon Phi Chi Psi Omega ,!</MATH> </TD></TR><TR><TD>`alpha beta gamma delta epsilon zeta` </TD><TD><MATH>alpha beta gamma delta epsilon zeta ,!</MATH> </TD></TR><TR><TD>`eta theta iota kappa lambda mu` </TD><TD><MATH>eta theta iota kappa lambda mu ,!</MATH> </TD></TR><TR><TD>`nu xi pi rho sigma tau` </TD><TD><MATH>nu xi pi rho sigma tau ,!</MATH> </TD></TR><TR><TD>`upsilon phi chi psi omega` </TD><TD><MATH>upsilon phi chi psi omega ,!</MATH> </TD></TR><TR><TD>`varepsilon digamma vartheta varkappa` </TD><TD><MATH>varepsilon digamma vartheta varkappa ,!</MATH> </TD></TR><TR><TD>`varpi varrho varsigma varphi` </TD><TD><MATH>varpi varrho varsigma varphi,!</MATH> </TD></TR><TR><TD>_2. '''Blackboard Bold/Scripts''' </TD></TR><TR><TD>`mathbb{A} mathbb{B} mathbb{C} mathbb{D} mathbb{E} mathbb{F} mathbb{G}` </TD><TD><MATH>mathbb{A} mathbb{B} mathbb{C} mathbb{D} mathbb{E} mathbb{F} mathbb{G} ,!</MATH> </TD></TR><TR><TD>`mathbb{H} mathbb{I} mathbb{J} mathbb{K} mathbb{L} mathbb{M}` </TD><TD><MATH>mathbb{H} mathbb{I} mathbb{J} mathbb{K} mathbb{L} mathbb{M} ,!</MATH> </TD></TR><TR><TD>`mathbb{N} mathbb{O} mathbb{P} mathbb{Q} mathbb{R} mathbb{S} mathbb{T}` </TD><TD><MATH>mathbb{N} mathbb{O} mathbb{P} mathbb{Q} mathbb{R} mathbb{S} mathbb{T} ,!</MATH> </TD></TR><TR><TD>`mathbb{U} mathbb{V} mathbb{W} mathbb{X} mathbb{Y} mathbb{Z}` </TD><TD><MATH>mathbb{U} mathbb{V} mathbb{W} mathbb{X} mathbb{Y} mathbb{Z},!</MATH> </TD></TR><TR><TD>_2. '''boldface (vectors)''' </TD></TR><TR><TD>`mathbf{A} mathbf{B} mathbf{C} mathbf{D} mathbf{E} mathbf{F} mathbf{G}` </TD><TD><MATH>mathbf{A} mathbf{B} mathbf{C} mathbf{D} mathbf{E} mathbf{F} mathbf{G} ,!</MATH> </TD></TR><TR><TD>`mathbf{H} mathbf{I} mathbf{J} mathbf{K} mathbf{L} mathbf{M}` </TD><TD><MATH>mathbf{H} mathbf{I} mathbf{J} mathbf{K} mathbf{L} mathbf{M} ,!</MATH> </TD></TR><TR><TD>`mathbf{N} mathbf{O} mathbf{P} mathbf{Q} mathbf{R} mathbf{S} mathbf{T}` </TD><TD><MATH>mathbf{N} mathbf{O} mathbf{P} mathbf{Q} mathbf{R} mathbf{S} mathbf{T} ,!</MATH> </TD></TR><TR><TD>`mathbf{U} mathbf{V} mathbf{W} mathbf{X} mathbf{Y} mathbf{Z}` </TD><TD><MATH>mathbf{U} mathbf{V} mathbf{W} mathbf{X} mathbf{Y} mathbf{Z} ,!</MATH> </TD></TR><TR><TD>`mathbf{a} mathbf{b} mathbf{c} mathbf{d} mathbf{e} mathbf{f} mathbf{g}` </TD><TD><MATH>mathbf{a} mathbf{b} mathbf{c} mathbf{d} mathbf{e} mathbf{f} mathbf{g} ,!</MATH> </TD></TR><TR><TD>`mathbf{h} mathbf{i} mathbf{j} mathbf{k} mathbf{l} mathbf{m}` </TD><TD><MATH>mathbf{h} mathbf{i} mathbf{j} mathbf{k} mathbf{l} mathbf{m} ,!</MATH> </TD></TR><TR><TD>`mathbf{n} mathbf{o} mathbf{p} mathbf{q} mathbf{r} mathbf{s} mathbf{t}` </TD><TD><MATH>mathbf{n} mathbf{o} mathbf{p} mathbf{q} mathbf{r} mathbf{s} mathbf{t} ,!</MATH> </TD></TR><TR><TD>`mathbf{u} mathbf{v} mathbf{w} mathbf{x} mathbf{y} mathbf{z}` </TD><TD><MATH>mathbf{u} mathbf{v} mathbf{w} mathbf{x} mathbf{y} mathbf{z} ,!</MATH> </TD></TR><TR><TD>`mathbf{0} mathbf{1} mathbf{2} mathbf{3} mathbf{4}` </TD><TD><MATH>mathbf{0} mathbf{1} mathbf{2} mathbf{3} mathbf{4} ,!</MATH> </TD></TR><TR><TD>`mathbf{5} mathbf{6} mathbf{7} mathbf{8} mathbf{9}` </TD><TD><MATH>mathbf{5} mathbf{6} mathbf{7} mathbf{8} mathbf{9},!</MATH> </TD></TR><TR><TD>_2. '''Boldface (greek)''' </TD></TR><TR><TD>`boldsymbol{Alpha} boldsymbol{Beta} boldsymbol{Gamma} boldsymbol{Delta} boldsymbol{Epsilon} boldsymbol{Zeta}` </TD><TD><MATH>boldsymbol{Alpha} boldsymbol{Beta} boldsymbol{Gamma} boldsymbol{Delta} boldsymbol{Epsilon} boldsymbol{Zeta} ,!</MATH> </TD></TR><TR><TD>`boldsymbol{Eta} boldsymbol{Theta} boldsymbol{Iota} boldsymbol{Kappa} boldsymbol{Lambda} boldsymbol{Mu}` </TD><TD><MATH>boldsymbol{Eta} boldsymbol{Theta} boldsymbol{Iota} boldsymbol{Kappa} boldsymbol{Lambda} boldsymbol{Mu},!</MATH> </TD></TR><TR><TD>`boldsymbol{Nu} boldsymbol{Xi} boldsymbol{Pi} boldsymbol{Rho} boldsymbol{Sigma} boldsymbol{Tau}` </TD><TD><MATH>boldsymbol{Nu} boldsymbol{Xi} boldsymbol{Pi} boldsymbol{Rho} boldsymbol{Sigma} boldsymbol{Tau},!</MATH> </TD></TR><TR><TD>`boldsymbol{Upsilon} boldsymbol{Phi} boldsymbol{Chi} boldsymbol{Psi} boldsymbol{Omega}` </TD><TD><MATH>boldsymbol{Upsilon} boldsymbol{Phi} boldsymbol{Chi} boldsymbol{Psi} boldsymbol{Omega},!</MATH> </TD></TR><TR><TD>`boldsymbol{alpha} boldsymbol{beta} boldsymbol{gamma} boldsymbol{delta} boldsymbol{epsilon} boldsymbol{zeta}` </TD><TD><MATH>boldsymbol{alpha} boldsymbol{beta} boldsymbol{gamma} boldsymbol{delta} boldsymbol{epsilon} boldsymbol{zeta},!</MATH> </TD></TR><TR><TD>`boldsymbol{eta} boldsymbol{theta} boldsymbol{iota} boldsymbol{kappa} boldsymbol{lambda} boldsymbol{mu}` </TD><TD><MATH>boldsymbol{eta} boldsymbol{theta} boldsymbol{iota} boldsymbol{kappa} boldsymbol{lambda} boldsymbol{mu},!</MATH> </TD></TR><TR><TD>`boldsymbol{nu} boldsymbol{xi} boldsymbol{pi} boldsymbol{rho} boldsymbol{sigma} boldsymbol{tau}` </TD><TD><MATH>boldsymbol{nu} boldsymbol{xi} boldsymbol{pi} boldsymbol{rho} boldsymbol{sigma} boldsymbol{tau},!</MATH> </TD></TR><TR><TD>`boldsymbol{upsilon} boldsymbol{phi} boldsymbol{chi} boldsymbol{psi} boldsymbol{omega}` </TD><TD><MATH>boldsymbol{upsilon} boldsymbol{phi} boldsymbol{chi} boldsymbol{psi} boldsymbol{omega},!</MATH> </TD></TR><TR><TD>`boldsymbol{varepsilon} boldsymbol{digamma} boldsymbol{vartheta} boldsymbol{varkappa}` </TD><TD><MATH>boldsymbol{varepsilon} boldsymbol{digamma} boldsymbol{vartheta} boldsymbol{varkappa} ,!</MATH> </TD></TR><TR><TD>`boldsymbol{varpi} boldsymbol{varrho} boldsymbol{varsigma} boldsymbol{varphi}` </TD><TD><MATH>boldsymbol{varpi} boldsymbol{varrho} boldsymbol{varsigma} boldsymbol{varphi},!</MATH> </TD></TR><TR><TD>_2. '''Italics''' </TD></TR><TR><TD>`mathit{A} mathit{B} mathit{C} mathit{D} mathit{E} mathit{F} mathit{G}` </TD><TD><MATH>mathit{A} mathit{B} mathit{C} mathit{D} mathit{E} mathit{F} mathit{G} ,!</MATH> </TD></TR><TR><TD>`mathit{H} mathit{I} mathit{J} mathit{K} mathit{L} mathit{M}` </TD><TD><MATH>mathit{H} mathit{I} mathit{J} mathit{K} mathit{L} mathit{M} ,!</MATH> </TD></TR><TR><TD>`mathit{N} mathit{O} mathit{P} mathit{Q} mathit{R} mathit{S} mathit{T}` </TD><TD><MATH>mathit{N} mathit{O} mathit{P} mathit{Q} mathit{R} mathit{S} mathit{T} ,!</MATH> </TD></TR><TR><TD>`mathit{U} mathit{V} mathit{W} mathit{X} mathit{Y} mathit{Z}` </TD><TD><MATH>mathit{U} mathit{V} mathit{W} mathit{X} mathit{Y} mathit{Z} ,!</MATH> </TD></TR><TR><TD>`mathit{a} mathit{b} mathit{c} mathit{d} mathit{e} mathit{f} mathit{g}` </TD><TD><MATH>mathit{a} mathit{b} mathit{c} mathit{d} mathit{e} mathit{f} mathit{g} ,!</MATH> </TD></TR><TR><TD>`mathit{h} mathit{i} mathit{j} mathit{k} mathit{l} mathit{m}` </TD><TD><MATH>mathit{h} mathit{i} mathit{j} mathit{k} mathit{l} mathit{m} ,!</MATH> </TD></TR><TR><TD>`mathit{n} mathit{o} mathit{p} mathit{q} mathit{r} mathit{s} mathit{t}` </TD><TD><MATH>mathit{n} mathit{o} mathit{p} mathit{q} mathit{r} mathit{s} mathit{t} ,!</MATH> </TD></TR><TR><TD>`mathit{u} mathit{v} mathit{w} mathit{x} mathit{y} mathit{z}` </TD><TD><MATH>mathit{u} mathit{v} mathit{w} mathit{x} mathit{y} mathit{z} ,!</MATH> </TD></TR><TR><TD>`mathit{0} mathit{1} mathit{2} mathit{3} mathit{4}` </TD><TD><MATH>mathit{0} mathit{1} mathit{2} mathit{3} mathit{4} ,!</MATH> </TD></TR><TR><TD>`mathit{5} mathit{6} mathit{7} mathit{8} mathit{9}` </TD><TD><MATH>mathit{5} mathit{6} mathit{7} mathit{8} mathit{9},!</MATH> </TD></TR><TR><TD>_2. '''Roman typeface''' </TD></TR><TR><TD>`mathrm{A} mathrm{B} mathrm{C} mathrm{D} mathrm{E} mathrm{F} mathrm{G}` </TD><TD><MATH>mathrm{A} mathrm{B} mathrm{C} mathrm{D} mathrm{E} mathrm{F} mathrm{G} ,!</MATH> </TD></TR><TR><TD>`mathrm{H} mathrm{I} mathrm{J} mathrm{K} mathrm{L} mathrm{M}` </TD><TD><MATH>mathrm{H} mathrm{I} mathrm{J} mathrm{K} mathrm{L} mathrm{M} ,!</MATH> </TD></TR><TR><TD>`mathrm{N} mathrm{O} mathrm{P} mathrm{Q} mathrm{R} mathrm{S} mathrm{T}` </TD><TD><MATH>mathrm{N} mathrm{O} mathrm{P} mathrm{Q} mathrm{R} mathrm{S} mathrm{T} ,!</MATH> </TD></TR><TR><TD>`mathrm{U} mathrm{V} mathrm{W} mathrm{X} mathrm{Y} mathrm{Z}` </TD><TD><MATH>mathrm{U} mathrm{V} mathrm{W} mathrm{X} mathrm{Y} mathrm{Z} ,!</MATH> </TD></TR><TR><TD>`mathrm{a} mathrm{b} mathrm{c} mathrm{d} mathrm{e} mathrm{f} mathrm{g}` </TD><TD><MATH>mathrm{a} mathrm{b} mathrm{c} mathrm{d} mathrm{e} mathrm{f} mathrm{g},!</MATH> </TD></TR><TR><TD>`mathrm{h} mathrm{i} mathrm{j} mathrm{k} mathrm{l} mathrm{m}` </TD><TD><MATH>mathrm{h} mathrm{i} mathrm{j} mathrm{k} mathrm{l} mathrm{m} ,!</MATH> </TD></TR><TR><TD>`mathrm{n} mathrm{o} mathrm{p} mathrm{q} mathrm{r} mathrm{s} mathrm{t}` </TD><TD><MATH>mathrm{n} mathrm{o} mathrm{p} mathrm{q} mathrm{r} mathrm{s} mathrm{t} ,!</MATH> </TD></TR><TR><TD>`mathrm{u} mathrm{v} mathrm{w} mathrm{x} mathrm{y} mathrm{z}` </TD><TD><MATH>mathrm{u} mathrm{v} mathrm{w} mathrm{x} mathrm{y} mathrm{z} ,!</MATH> </TD></TR><TR><TD>`mathrm{0} mathrm{1} mathrm{2} mathrm{3} mathrm{4}` </TD><TD><MATH>mathrm{0} mathrm{1} mathrm{2} mathrm{3} mathrm{4} ,!</MATH> </TD></TR><TR><TD>`mathrm{5} mathrm{6} mathrm{7} mathrm{8} mathrm{9}` </TD><TD><MATH>mathrm{5} mathrm{6} mathrm{7} mathrm{8} mathrm{9},!</MATH> </TD></TR><TR><TD>_2. '''Fraktur typeface''' </TD></TR><TR><TD>`mathfrak{A} mathfrak{B} mathfrak{C} mathfrak{D} mathfrak{E} mathfrak{F} mathfrak{G}` </TD><TD><MATH>mathfrak{A} mathfrak{B} mathfrak{C} mathfrak{D} mathfrak{E} mathfrak{F} mathfrak{G} ,!</MATH> </TD></TR><TR><TD>`mathfrak{H} mathfrak{I} mathfrak{J} mathfrak{K} mathfrak{L} mathfrak{M}` </TD><TD><MATH>mathfrak{H} mathfrak{I} mathfrak{J} mathfrak{K} mathfrak{L} mathfrak{M} ,!</MATH> </TD></TR><TR><TD>`mathfrak{N} mathfrak{O} mathfrak{P} mathfrak{Q} mathfrak{R} mathfrak{S} mathfrak{T}` </TD><TD><MATH>mathfrak{N} mathfrak{O} mathfrak{P} mathfrak{Q} mathfrak{R} mathfrak{S} mathfrak{T} ,!</MATH> </TD></TR><TR><TD>`mathfrak{U} mathfrak{V} mathfrak{W} mathfrak{X} mathfrak{Y} mathfrak{Z}` </TD><TD><MATH>mathfrak{U} mathfrak{V} mathfrak{W} mathfrak{X} mathfrak{Y} mathfrak{Z} ,!</MATH> </TD></TR><TR><TD>`mathfrak{a} mathfrak{b} mathfrak{c} mathfrak{d} mathfrak{e} mathfrak{f} mathfrak{g}` </TD><TD><MATH>mathfrak{a} mathfrak{b} mathfrak{c} mathfrak{d} mathfrak{e} mathfrak{f} mathfrak{g} ,!</MATH> </TD></TR><TR><TD>`mathfrak{h} mathfrak{i} mathfrak{j} mathfrak{k} mathfrak{l} mathfrak{m}` </TD><TD><MATH>mathfrak{h} mathfrak{i} mathfrak{j} mathfrak{k} mathfrak{l} mathfrak{m} ,!</MATH> </TD></TR><TR><TD>`mathfrak{n} mathfrak{o} mathfrak{p} mathfrak{q} mathfrak{r} mathfrak{s} mathfrak{t}` </TD><TD><MATH>mathfrak{n} mathfrak{o} mathfrak{p} mathfrak{q} mathfrak{r} mathfrak{s} mathfrak{t} ,!</MATH> </TD></TR><TR><TD>`mathfrak{u} mathfrak{v} mathfrak{w} mathfrak{x} mathfrak{y} mathfrak{z}` </TD><TD><MATH>mathfrak{u} mathfrak{v} mathfrak{w} mathfrak{x} mathfrak{y} mathfrak{z} ,!</MATH> </TD></TR><TR><TD>`mathfrak{0} mathfrak{1} mathfrak{2} mathfrak{3} mathfrak{4}` </TD><TD><MATH>mathfrak{0} mathfrak{1} mathfrak{2} mathfrak{3} mathfrak{4} ,!</MATH> </TD></TR><TR><TD>`mathfrak{5} mathfrak{6} mathfrak{7} mathfrak{8} mathfrak{9}` </TD><TD><MATH>mathfrak{5} mathfrak{6} mathfrak{7} mathfrak{8} mathfrak{9},!</MATH> </TD></TR><TR><TD>_2. '''Calligraphy/Script''' </TD></TR><TR><TD>`mathcal{A} mathcal{B} mathcal{C} mathcal{D} mathcal{E} mathcal{F} mathcal{G}` </TD><TD><MATH>mathcal{A} mathcal{B} mathcal{C} mathcal{D} mathcal{E} mathcal{F} mathcal{G} ,!</MATH> </TD></TR><TR><TD>`mathcal{H} mathcal{I} mathcal{J} mathcal{K} mathcal{L} mathcal{M}` </TD><TD><MATH>mathcal{H} mathcal{I} mathcal{J} mathcal{K} mathcal{L} mathcal{M} ,!</MATH> </TD></TR><TR><TD>`mathcal{N} mathcal{O} mathcal{P} mathcal{Q} mathcal{R} mathcal{S} mathcal{T}` </TD><TD><MATH>mathcal{N} mathcal{O} mathcal{P} mathcal{Q} mathcal{R} mathcal{S} mathcal{T} ,!</MATH> </TD></TR><TR><TD>`mathcal{U} mathcal{V} mathcal{W} mathcal{X} mathcal{Y} mathcal{Z}` </TD><TD><MATH>mathcal{U} mathcal{V} mathcal{W} mathcal{X} mathcal{Y} mathcal{Z},!</MATH> </TD></TR><TR><TD>_2. '''Hebrew''' </TD></TR><TR><TD>`aleph beth gimel daleth` </TD><TD><MATH>aleph beth gimel daleth,!</MATH> </TD></TR></TBODY>
|
|
132 | - | + | ||
133 | - | + | == Formatting issues ==
|
|
134 | - | + | ||
135 | - | + | === Spacing ===
|
|
136 | - | + | ||
137 | - | + | Note that TeX handles most spacing automatically, but you may sometimes want manual control.
|
|
138 | - | + | ||
139 | - | + | <TBODY><TR><TD>'''Feature''' </TD><TD>'''Syntax''' </TD><TD>'''How it looks rendered''' </TD></TR><TR><TD>double quad space </TD><TD>a qquad b </TD><TD><MATH>a qquad b</MATH> </TD></TR><TR><TD>quad space </TD><TD>a quad b </TD><TD><MATH>a quad b</MATH> </TD></TR><TR><TD>text space </TD><TD>a b </TD><TD><MATH>a b</MATH> </TD></TR><TR><TD>text space without PNG conversion </TD><TD>a mbox{ } b </TD><TD><MATH>a mbox{ } b</MATH> </TD></TR><TR><TD>large space </TD><TD>a;b </TD><TD><MATH>a;b</MATH> </TD></TR><TR><TD>medium space </TD><TD>a>b </TD><TD>(not supported) </TD></TR><TR><TD>small space </TD><TD>a,b </TD><TD><MATH>a,b</MATH> </TD></TR><TR><TD>no space </TD><TD>ab </TD><TD><MATH>ab,</MATH> </TD></TR><TR><TD>small negative space </TD><TD>a!b </TD><TD><MATH>a!b</MATH> </TD></TR></TBODY>
|
|
140 | - | + | ||
141 | - | + | [https://stemedhub.org/wiki/HelpIndex Back to Wiki Help Page] |
|
142 | - | + | ||
143 | - | + | ||
144 | - | + | ||
145 | - | + | ||
146 | - | + | ||
147 | - | + | ||
148 | - | + | ||
149 | - | + | ||
150 | - | + | ||
151 | - | + | ||
152 | - | + | ||
153 | - | == Larger Expressions == |
+ | |
154 | - | + | ||
155 | - | === Parenthesizing big expressions, brackets, bars === |
+ | |
156 | - | + | ||
157 | - | + | ||
158 | - | + | ||
159 | - | + | ||
160 | - | + | ||
161 | - | You can use various delimiters with |
+ | |
162 | - | + | ||
163 | - | + | ||
164 | - | + | ||
165 | - | + | ||
166 | - | + | ||
167 | - | + | ||
168 | - | + | ||
169 | - | + | ||
170 | - | + | ||
171 | - | + | ||
172 | - | + | ||
173 | - | + | ||
174 | - | + | ||
175 | - | + | ||
176 | - | + | ||
177 | - | + | ||
178 | - | + | ||
179 | - | + | ||
180 | - | + | ||
181 | - | + | ||
182 | - | == Alphabets and typefaces == |
+ | |
183 | - | + | ||
184 | - | Texvc cannot render arbitrary Unicode characters. Those it can handle can be entered by the expressions below. For others, such as Cyrillic, they can be entered as Unicode or HTML entities in running text, but cannot be used in displayed formulas. |
+ | |
185 | - | + | ||
186 | - | + | ||
187 | - | + | ||
188 | - | + | ||
189 | - | + | ||
190 | - | + | ||
191 | - | + | ||
192 | - | + | ||
193 | - | + | ||
194 | - | + | ||
195 | - | + | ||
196 | - | + | ||
197 | - | + | ||
198 | - | + | ||
199 | - | + | ||
200 | - | + | ||
201 | - | + | ||
202 | - | + | ||
203 | - | + | ||
204 | - | + | ||
205 | - | + | ||
206 | - | + | ||
207 | - | + | ||
208 | - | + | ||
209 | - | + | ||
210 | - | + | ||
211 | - | + | ||
212 | - | + | ||
213 | - | + | ||
214 | - | + | ||
215 | - | + | ||
216 | - | + | ||
217 | - | + | ||
218 | - | + | ||
219 | - | + | ||
220 | - | + | ||
221 | - | + | ||
222 | - | + | ||
223 | - | + | ||
224 | - | + | ||
225 | - | + | ||
226 | - | + | ||
227 | - | + | ||
228 | - | + | ||
229 | - | + | ||
230 | - | + | ||
231 | - | + | ||
232 | - | + | ||
233 | - | + | ||
234 | - | + | ||
235 | - | + | ||
236 | - | + | ||
237 | - | + | ||
238 | - | + | ||
239 | - | + | ||
240 | - | + | ||
241 | - | + | ||
242 | - | + | ||
243 | - | + | ||
244 | - | + | ||
245 | - | + | ||
246 | - | + | ||
247 | - | + | ||
248 | - | + | ||
249 | - | + | ||
250 | - | + | ||
251 | - | + | ||
252 | - | + | ||
253 | - | + | ||
254 | - | + | ||
255 | - | + | ||
256 | - | + | ||
257 | - | + | ||
258 | - | + | ||
259 | - | + | ||
260 | - | + | ||
261 | - | + | ||
262 | - | + | ||
263 | - | + | ||
264 | - | + | ||
265 | - | + | ||
266 | - | + | ||
267 | - | + | ||
268 | - | + | ||
269 | - | + | ||
270 | - | + | ||
271 | - | + | ||
272 | - | + | ||
273 | - | + | ||
274 | - | + | ||
275 | - | + | ||
276 | - | + | ||
277 | - | + | ||
278 | - | + | ||
279 | - | + | ||
280 | - | + | ||
281 | - | + |