
ARTICLE:1146

article:1146

Learning and Teaching Programming: A Review and Discussion

The full article is a review and discussion of research relating to teaching and learning
programming. This is a broad field, with a substantial literature spanning over 30 years. Our
focus is on research conducted from a psychological / educational perspective, with a particular
emphasis on the topic of novices learning their first programming language. The goal of the
paper is to summarize and organize the main results in the literature, and to draw out certain
themes for discussion. As such our methodology is that of a review, and our "data" consists of
the many papers that we considered. Standard definitions of what constitutes "research",
"programming", "programming language" and so on, form a broad and general conceptual
framework. Within this framework have found it productive to view computer science education
(CSEd) research as an interdisciplinary "trading zone" (Fincher & Petre, 2004), involving
concepts drawn from psychology, education, software engineering and computer science.

A number of trends can be identified in the literature. The first is a distinction between novices
and experts, with an emphasis on the many deficits of novices. The second trend is the
distinction between knowledge and strategies. An important though ill-defined concept is the
schema / plan as the most important building block of programming knowledge. An important
but open question is why and how different strategies emerge, and how these are related to
underlying knowledge. The third trend is the distinction between program comprehension and
generation, with models of the former being more numerous. The distinction has implications for
course design and assessment - comprehension based assessment tasks may not be a good
measure of the ability to write programs. The fourth, recent trend, is a comparison of object
oriented and procedural programming styles.

It is clear that novice programmers face a very difficult task. Learning to program involves
acquiring complex new knowledge and related strategies and practical skills. Novices typically
have many deficits in both knowledge and strategies. In terms of language features, loops,
conditionals, arrays and recursion have all been identified as especially problematic. It may be
helpful to make aspects of control flow and data flow explicit, and avoid "hidden" actions or
states. Several authors have suggested, however, that the most important deficits relate to the
underlying issues of problem solving, design, and expressing a solution / design as an actual
program. As well as acquiring knowledge and strategies, novice programmers must learn to
develop models of the problem domain, the notional machine, and the desired program, and
also develop tracking and debugging skills so as to model and correct their programs. Explicitly
identifying and addressing each of these topics may be beneficial. Finally, novice's problems
exacerbated by the fact that where knowledge and strategies are learned, they are often fragile
(not applied, or misapplied). Further research may be useful to determine whether this is a
deficit in accessing learned material, recognizing the situations in which it is appropriate, or

 1 / 3

ARTICLE:1146

having the confidence to use it / experiment. The overall picture of the issues that emerged from
our review can be summarized in a 3x3 matrix, where one dimension covers attributes that the
novice programmer must develop (knowledge, skills, models), and the second dimension covers
the phases of creating a program (design, generation, evaluation).

From our point of view as teachers there is a distinction which is much more important than the
novice vs. expert distinction which has received so much attention in the literature, namely the
distinction between effective vs. ineffective novices. What underlying properties make a novice
effective? How can we best turn ineffective novices into effective ones? We suggest that the
most significant differences relate to strategies rather than knowledge. Most current course
designs and textbooks are organized around presenting knowledge. The strategies for
accessing and applying this knowledge typically receive much less attention, but they are crucial
to the learning outcome. What strategies do effective novices employ, how do they relate to
their knowledge and their relevant mental models, and can these strategies be taught to
ineffective novices?

We hope that the review and discussion of the issues covered in this paper will be of interest to
those in other disciplines, such as engineering, who are involved in teaching or learning
complex bodies of structured knowledge and the strategies and models that are required to
apply such knowledge in practical situations.

This work was supported by internal University of Otago Research into Teaching grants.

Author 1: Anthony Robins email: anthony@atlas.otago.ac.nz

Author 2: Janet Rountree email: noemail@nae.edu

Author 3: Nathan Rountree email: noemail2@nae.edu

Reference: Fincher S. & Petre M. (2004) Computer Science Education Research.
RoutledgeFalmer,Taylor & Francis Group: London and New York.

: Back to Summer 2005 Issue Vol. 1, No. 1

: Back to List of Issues

 2 / 3

https://stemedhub.org/groups/cleerhub/wiki/issue:1003
https://stemedhub.org/groups/cleerhub/wiki/AREEIssues

ARTICLE:1146

: Back to Table of Contents

Powered by TCPDF (www.tcpdf.org)

 3 / 3

https://stemedhub.org/groups/cleerhub/wiki/AREEAnnalsofResearchonEngineeringEducation
http://www.tcpdf.org

