(Re) shaping Evaluation Reports: Building a Report Template in R Markdown

Template Coding Standards to Ensure Standard Reporting Standard Libraries to load for all basic reports Iibrary(dplyr) Iibrary(tidyr) Iibrary(ggplot2) Iibrary(ggplot2) Iibrary(gflextable) Iibrary(flextable) Iibrary(flextable) Iibrary(forcats)

Standard Code Chunk definitions

knitr::opts_chunk\$set(echo=FALSE, warning=FALSE,
error=FALSE, include=FALSE, message=FALSE, comment=NA)

RMD Reports can be created as Word Docs, HTML, and PDF

Standard fonts and headings can be set in a Word template to be used for all reports.

Positively Highlight Subgroup Differences with Tables

The Flextable package was used to create customizable tables because it works well in RMD with as Microsoft Word Output

Each subgroup with a mean value more than 0.1 higher than that of the overall mean is indicated by a green box and any subgroup with a mean value more than 0.1 lower than the overall mean is indicated by a purple box. An '*' appears to indicate a statistically significant difference among the subgroup

Group		Subgroup	Mean	SD	Diff from Overall Mean
All Formal Primary Students Social Economic Status			2.36	1.25	
Location Type	*	Urban	2.78	1.19	0.42
		IDP	1.67	1.03	-0.69
		Rural	1.92	1.14	-0.44
School Funding Type	*	Private	2.89	1.08	0.53
		Community	2.03	1.20	-0.34
		Public	2.22	1.26	-0.14
Gender		Male	2.38	1.24	0.02
		Female	2.34	1.26	-0.02
Age	*	4 to 8 year olds	2.10	1.23	-0.26
		9 to 16 year olds	2.43	1.24	0.06
		17 to 20 year olds	2.29	1.50	-0.08
State	*	Benadir	2.58	1.14	0.21
		Hirshabelle	3.17	1.02	0.81
		Jubaland	1.81	1.25	-0.55
		Southwest	2.22	1.15	-0.14

4 Advantages of using R Markdown for building Report Templates

Detailed R coding examples are available online

A Table of Contents can easily and quickly be included

Functions can be created for repetitious tables/graphs

Coding Techniques to Protect Participant Anonymity

Custom functions can be created to reuse the same code multiple times to ensure participant anonymity.

check to make sure there are 10 or more Other subgroup members or do not display their values for (i in 1:length(avg_list)) {

if(genderothercount>=subgrouplimit){

dfbasebuild\$Other[(i-1)*3+1] <- paste('M', specify_decimal(tempMean\$mean[3], 2), sep = ' = ') dfbasebuild\$Other[i*3-1] <- paste('SD', specify_decimal(tempSd\$SD[3], sigdig), sep = ' = ') tempminOther <- specify_decimal(tempmin\$min[3], 2)

tempmaxOther <- specify_decimal(tempmax\$max[3], 2) dfbasebuildOther[i*3] <- paste('R', (paste(tempminOther, tempmaxOther, sep = '-')), sep = ' = '

lse {
 dfbasebuild\$Other[(i-1)*3+1] <- "NA"
 dfbasebuild\$Other[i*3-1] <- "NA"

dfbasebuild\$Other[i*3] <- "NA"
} }

College of Education