Hydroelectricity

Mike Arvola Andrew Bever Joe Brennan Chris Dora

Team: Watt-er

Introduction to Hydroelectricity

- By Style
 - Impoundment, Diversion, Pumped Storage

- By Size
 - Large, Small, Micro

First Type

Impoundment

(U.S. Department of Energy, Wind and Power Program, 2005)

Hydropower Video

How Hydroelectric Power Works

Second Type

- Diversion
 - Also known as "run-ofriver"

Pumped Storage

• Like a battery

(Pumped Storage Hydroelectricity, 2011)

Advantages/Disadvantages

- Advantages
 - Environmental benefits
 - Doesn't have to be imported
 - Efficient
 - Electric production doesn't destroy water
 - Low cost
 - Can be utilized to meet peak demands
- Disadvantages
 - High initial investment costs
 - Environmental concerns

Our Investigative Question

- Driving Questions
 - How can Indiana meet its energy needs while still increasing standard of living?
 - Which alternative energy sources make sense for Indiana?
- Is hydroelectric energy feasible for Indiana?
 - Our Process

Feasibility of Building a Hydroelectric Facility

- How much power will be generated?
- Do you want to do these?

$$R_e = \frac{D \cdot V}{v}$$

$$U = -2\sqrt{2gD^{h_f}/L} \log \left(\frac{e/D}{3.7} + \frac{2.51v}{D\sqrt{2gD^{h_f}/L}} \right)$$

$$H_1 = h_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g}$$

$$h_f = f \cdot \left(\frac{L}{D}\right) \cdot \frac{V^2}{2g}$$

(Guide on how to develop a small hydropower plant 2004)

Basic Dam Description

Head- change in elevation of the water from point a to

point b

an impoundment dam

(U.S. Department of Energy, Wind and Power Program, 2005)

- Indiana Rivers Four Main River basins with the capability for over 10,000 ft³/s
 - Wabash, Ohio, White, St Joseph
 - Dams located on:
 - Tippecanoe, St. Joseph, Ohio

(http://geology.com/ state-map/indiana.shtml, 2008)

(http://waterdata.usgs.gov/nw 2011)

Indiana's General Topography

- Wide Ranges
- But you see my point
- Wabash
 - From 692 ft in Lafayette
 - To 400 ft near Mt.
 Vernon
 - in 250 miles

(http://geology.com/state-map/indiana.shtml, oo8)

U.S. Hydropower Resource Assessment for Indiana

- Idaho National Engineering Laboratory
 - Hydropower Evaluation Software (HES)
 - Expected Potential for Hydropower for Indiana:
 - 83.5 MW
 - HES Modeled Potential for Hydropower for Indiana:
 - 43.4 MW

(Francfort, J. E., 1995)

- In 2008...
 - Total BTU for Indiana was 2857400 x 109
 - 95.6 GW average power requirement

(Kurtzleben, n.d)

Individual applications

- Individuals near rivers can harness water power.
 - Similar to adding solar panels or small wind turbine
 - River must meet minimum requirements of system
 - Example product

Summary

- Is hydropower feasible in Indiana?
 - Not on a large scale (micro is an option)
- How can Indiana meet its energy needs while still increasing standard of living?
 - Use of micro and conservation on an individual level
- Which alternative energy sources make sense for Indiana?
 - What we have is good; but expansion is impracticle

Sources

- Smart hydro power. (n.d.). Retrieved from http://www.smart-hydro.de/en/home.html
- *Guide on how to develop a small hydropower plant*. (n.d.). Retrieved from http://www.esha.be/index.php?id=39
- Government of Alberta, Agriculture and Rural Development. (n.d.). *Hydroelectric power*. Retrieved from http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/eng4431
- U.S. Department of Energy, Wind and Power Program. (2005). *Types of hydropower plants*. Retrieved from http://wwwi.eere.energy.gov/windandhydro/hydro_plant_types.html
- Francfort, J. E. (1995). *U.S. hydropower resource assessment for Indiana* (DOE/ID-10430(IN)). Retrieved from Idaho National Engineering Library website: http://hydropower.inel.gov/resourceassessment/pdfs/states/in.pdf
- Uniter States Geological Survey. (2011). USGS Water Data for the Nation. Retrieved from http://waterdata.usgs.gov/nwis
- Geology.com. (2008). *News and Information about Geology and Earth Science*. Retrieved from http://geology.com/state-map/indiana.shtml
- Pumped-storage hydroelectricity. (2011, June 15). In *Wikipedia, The Free Encyclopedia*. Retrieved from http://en.wikipedia.org/w/index.php?title=Pumped-storage hydroelectricity&oldid=434338156
- Kurtzleben, D. (n.d). The 10 States that Use the Most Energy Per Capita. *Usnews*. Retrieved from http://www.usnews.com/news/slideshows/the-10-states-that-use-the-most-energy-per-capita/2
- Energy Matters. (1998). Oracle ThinkQuest. http://library.thinkquest.org/20331